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But Clock Frequency Scaling
Replaced by Scaling Cores / Chip
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APErSC This has Also Impacted

“===  HPC System Concurrency
Sum of the # of cores in top 15 systems (from top500.0rQg)

Exponential wave of increasing concurrency for forseeable future!

e o — 1M cores sooner than you think!
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Y =rsc Getting to Exascale
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A back-of-the-envelope exascale design

 An exascale machine will be built from processors at
roughly today’s clock rate
— 1 GHz - 10° (within a factor of 4)
| only call them a

e An exascale machine therefore needs “core” if they can
execute a thread of

_ 109'Way Concurrency Instructions that
e That concurrency likely to be divided as [ distinct
— 10° chips plus 102 way concurrency (arithmetic units) on chip

« The 1K on-chip concurrency to be divided as
— Independently executing cores with data parallelism

* 16 cores each with 64-way vectors / GPU-warps| There may be another 8-16
e 128 cores each with 8-wide SIMD hardware threads per core

_ Plus a 1-2 run the OS and other services | ' Pandwidthis high
enough that latency is still
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W eRsc Multicore vs. Manycore
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 Multicore: current trajectory
— Stay with current fastest core design
— Replicate every 18 months (2,4, 8 ... Etc...)
— Advantage: Do not alienate serial workload
— Examples: AMD Barcelona (4 cores),

Intel Nehalem (4 cores),...

« Manycore: converging in this direction
— Simplify cores (shorter pipelines, slower clocks, in-order processing)
— Start at 100s of cores and replicate every 18 months

— Advantage: easier verification, defect tolerance, highest compute/
surface-area, best power efficiency

— Examples: Cell SPE (8 cores), Nvidia G80 (128 cores),
Intel Polaris (80 cores), Cisco/Tensilica Metro (188 cores)
« Convergence: Ultimately toward Manycore
— Manycore: if we can figure out how to program it!
— Hedge: Heterogenous Multicore (still must run PPT)
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vz Memory is Not Keeping Pace

NATIONAL ENERGY RESEARCH
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Technology trends against a constant or increasing memory per core
 Memory density is doubling every three years; processor logic is every two
» Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

_ _ 100 Cost of Computation vs. Memory
Evolution of memory density
10 s Source: David Turek, IBM
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The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

Question: Can you double concurrency without doubling memory?
/_\l ‘m
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L&z What's Wrong with MPI Everywhere

« We can run 1 MPI process per core (flat model for
parallelism)
— This works now on dual and quad-core machines

« What are the problems?

— Latency: some copying required by semantics

— Memory utilization: partitioning data for separate address
space requires some replication

 How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth

— Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

— Heterogeneity: MPI per CUDA thread-block?

e Easiest approach
— MPI + X, where X is OpenMP, Pthreads, OpenCL, CUDA,...
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PGAS Languages: Why use 2

M ERSC| _ :
| . Programming Models when 1 will do?
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* Global address space: thread may directly read/write remote data
e Partitioned: data is designated as local or global
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« Remote put and get: never have to say “receive”
« Remote function invocation? See HPCS languages

 No less scalable than MPI! (see previous talks)
 Permits sharing, whereas MPI rules it out!
« One model rather than two, but if you insist on two:
« Can call UPC from MPI and vice verse (tested and used) f\\l
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W ERSC .
s, WAt Heterogeneity Means to Me

« Case for heterogeneity

— Many small cores or wide data parallelism needed for
energy efficiency, etc.

— Need one fat core (at least) for running the OS

o Local store, explicitly managed memory hierarchy
— More efficient (get only what you need) and simpler to
Implement in hardware
e Co-Processor interface between CPU and
Accelerator

— Market forces push this: GPUs have been separate chips for
specific domains, but they may move on-chip

— Do we really have use this co-processor idea? Isn’t parallel
programming hard enough

~
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But....Optimizing for Multicore:
e AlMOSt as Hard (|f Not Hard er)

Intel Xeon (Clovertown) AMD Opteron (Barcelona)
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Sun Niagara? (Victoria Falls)
Simplest possible problem:
stencil computation: nearest
neighbor relaxation on 3D Mesh
*For this simple code - all cache-
based platforms show poor efficiency
and scalability
*Could lead programmer to believe
that approaching a resource limit
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Intel Xeon (Clovertown)

1.9x

Number of Cores

uned Performance

AMD Onteron (Barcelona)

Sun Niagara? (Victoria Falls)

GFlops/s

2.9X
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Number of Cores

Optimizations

include:
% NUMA-
Aware
< Padding
5 4x + Unroll/
£ Reordering
< Thread/
Cache
e Blocking
< Prefetching
Number of Cores % SIMDizatio
n
+ Different optimizations have % Cache
dramatic effects on different Bypass

architectures

< Largest optimization benefit seen
for the largest core count
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W ERSC Stencil Results
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Languages for Manycore

« PGAS memory are a good fit to machines with explicitly
managed memory (local store)
— Global address space implemented as DMA reads/writes

— New “vertical” partition of memory needed for on/off chip, e.qg.,
upc_offchip_alloc

— Non-blocking features of UPC put/get are useful

« SPMD execution model needs to be adapted to

heterogeneity
T m: e e e Private on-chip

Network

Computer Node Computer Node

— | Shared
partitioned
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A ERSC Radical (and Unappealing)
SCIENTIFIC COMPUTING CENTER P r O p O S al

Adding teams to SPMD execution model
« These are needed for collectives in any case
 Uses separate teams for fat cores vs thin core teams

Execution model
e Execute SPMD code on either set

« Execute any code you want on each core

— Careful: needs to be the same (data parallel execution) to
run well

— Or still use a different model (annotated loops) for SIMD
parallelism

~
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L 4Z833 Features of Successful Languages

 Portability of applications

— Multiple compilers, portable compilers, or both (UPC vs CAF
to date)
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ERSC

e UPC Compiler: Designed fo

TIF COMPU G CE

2% ;‘

A

Platform-
independent
Network- Language Runtime system : %Omp”gr' t
independent 'ndepenaen
Language-
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W ERSC Portability of GASNET

Original vision of conduit development progression

 Build GASNet core (Active Messages) with provided “reference
Implementation” of full APl on core

* Incrementally develop native implementations of features (put/get,
etc.) of full API

Easier parts of implementation first
Better time-to-solution for acceptable performance
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L 4Z833 Features of Successful Languages

 Portability of applications
— Multiple compilers, portable compilers, or both (UPC vs CAF
to date)
* Interoperability with other models
— Calling MPI from UPC and vice versa
— Necessary for incremental development
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« 16 cores on 4 sockets: how many threads & processes?

« 8 cores with 2 hardware threads per core (hyperthreading)
 Processes intermix with MPI; Threads with OpenMP
 Performance tradeoffs unclear: Can we get shared memory with
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LaxXa NAS Benchmarks — Intel Tig
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Performance improvement of ProcSM over Pthreads
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. Axx3 Features of Successful Languages

Portability of applications
— Multiple compilers, portable compilers, or both

* Interoperability with other models
— Calling MPI from UPC and vice versa
— Necessary for incremental development

« Performance comparable to or better than
alternatives, including scalability
— This should be a selling point, not 2x slower

« Take advantage of “best” hardware
— Best networks, multicore, etc.
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APERSC Sharing and Communication
SATIONAL st IS MOd e| S: PG AS VS. M P|

two-sided message in MPI host
message id data payload > CPU
_ _ network
one-sided put message in PGAS :
Interface
address data payload —
memory

« A two-sided messages needs to be matched with a receive
to identify memory address to put data
— Offloaded to Network Interface in networks like Quadrics
— Need to download match tables to interface (from host)
« A one-sided put/get message can be handled directly by a
network interface with RDMA support

— Avoid interrupting the CPU or storing data from CPU
(preposts)
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A ErRSC GASNet vs. MPI Bandwidth
SOl PR TIRGE O B G/ P
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« GASNet outperforms MPI on small to medium messages, especially when

multiple links are used. /\I
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Xi-4-Performance

Performance on Franklin,
quad-core XT4 @ NERSC
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— NERSC development
machine access for
testing

— Testing infrequently used
code paths in Portals 0
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pfcEsc UPC on BlueGene/P

Faster dense linear algebra than PBLAS/ScaLAPACK
— Parallel matrix multiplication: 36% faster (256 cores)
— Parallel Cholesky factorization: 9% faster (256 cores)

Faster FFTs than MPI
GASNet collectives
up to 4x faster than

previous release
GASNet implemented
on DCMF layer

GFlops

EERD, U-S. DEPARTMENT OF Office of

ENERGY Science
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Optimizing Collectives on
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« Many algorithms even for
barrier synchronization

 Dissemination based:
— O(Tlog T) “messages”
— Time: L*(log T) (L = latency)
Tree-based
— O(T) “messages”
— Time: 2L*(log T)
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Need for Autotuned Multicore

1.E+07
¥ Pthread Lib
B Dissemination
1.E+06
- B Tree Push/Push
g Tree Push/Pull
§ 1.E+05 ® Tree Pull/Push
3 " Tree Pull/Pull
[
S
E 1E+04
(¢D)
£
|_
1.E+03 -
1.E+02 -

Intel Clovertown (8) AMD Opteron (32) Sun Niagara2 (256)

“Traditional pthread barriers” yield poor performance
Tree algorithms: best of structures, varying signaling [Nishtala+, HotPar’09]
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. Axx3 Features of Successful Languages

 Portability of applications
— Multiple compilers, portable compilers, or both

* Interoperability with other models
— Calling MPI from UPC and vice versa
— Necessary for incremental development

« Performance comparable to or better than
alternatives, including scalability
— This should be a selling point, not 2x slower

« Take advantage of “best” hardware
— Best networks, multicore, etc.

« Easy to use for a broad set of applications
— Are there applications that do not match UPC well?
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Ay crsc Irregular Applications
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« UPC originally for “irregular” applications

— Many recent performance results are on “regular” ones
(FFTs, NPBs, etc.); those also do well

 Does it really handle irregular ones? Which?

— Irregular in data accesses:

* Irregular in space (sparse matrices, AMR, etc.). global address
space helps; needs compiler or language for scatter/gather

e Irregular in time (hash table lookup, etc.): for reads, UPC handles
this well; for write you need atomic operations

— lIrregular computational patterns:
 High level independent tasks (ocean, atm, land, etc.): need teams
 Non bulk-synchronous: use event-driven execution

* Not statically load balanced (even with graph partitioning, etc.):
need global task queue

~
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Two Programming Model
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« What is the parallel control model?

LN
el

data parallel dynamic single program
(singe thread of control) threads multiple data (SPMD)

 What is the model for sharing/communication?

L receive
store 7 =
load - send
shared memory message passing

athnplied. synghronization for message passing, not shared memgoryy, i
@ ENERGY oI ¢ ——11
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" T Complication of Work Sharing in

o If tasks are waiting for others to
complete, then need to suspect
tasks for fairness:

— This can blow up the memory space

— CILK and X10 results on “provably
optimal space”: execute by
functional call / stack semantics
until you run out of work

 Run-to-completion:
— Efficient and simpler to implement

— But doesn’t always give the desired
‘ semantics

Memory partitioning with work
sharing: can run out of memory

00000
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a3 Response of UPC to Challenges

« Small memory per core
— Ability to directly access another core’s memory
 Lack of UMA memory on chip
— Partitioned address apce
« Massive concurrency
— Good match for independent parallel cores
— Not for data parallelism
« Heterogeneity
— Need to relax strict SPMD with at least teams
e Application generality
— Add atomics so remote writes work (not just reads)
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“4gxXE A Brief History of Languages
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When vector machines were king
— Parallel “languages” were loop annotations (IVDEP)
— Performance was fragile, but there was good user support

When SIMD machines were king
— Data parallel languages popular and successful (CMF, *Lisp, C*, ...)

— Quite powerful: can handle irregular data (sparse mat-vec multiply);
Irregular computation is less clear (search, sparse factorization)

When shared memory machines (SMPs) were king
— Shared memory models, e.g., OpenMP, Posix Threads, are popular

When clusters took over

— Message Passing (MPI) became dominant

When clusters of multicore take over...

— Will PGAS be the dominant programming model?

What does it take to make a programming language successful?
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